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A SYSTEMATIC EXPERIMENTAL INVESTISATION OF SIGNIFICANT
PARAMETERSAFFECTING MODELTIRE HYDROPLANING

by

Gilbert A, Wray

and

I. Rober't Ehrlich

- ABSTRACT

_" The results of a comprehensive parametric study of model and small

pneumatic tires operating on a wet surface are presented, Hydroplaning

inception (spin down) and roiling restoration (spin up) are discussed.

_ Conclusions Indicate that hydroplaning inception occurs at a speed

- significantly higher than the rolling restoration speed. Hydroplaning

_, speed increases considerably with tread depth, surface roughness and tlre

inflation pressure or footprint pressure_ and only moderately with increased

load. Water film thickness affects spin down speed oniy slightly. Spin

,1 down speed varies Inversely as approximately the one-sixth power of film

thickness.

Empirical equations relating tire _nflatlon pressure_ normal Ioad_ tire

diameter and water filnl thickness have been generated for various tire tread

! and surface configurations.
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A SYSTEMATIC EXPERIHENTAL INVESTIGATION OF SIGNIFICANT
PARAMETERSAFFECTING HODELTIRE HYDROPLANING

By Gilbert Ao Wray and I. Robert Ehrlich
Stevens institute of Technology

SUMMARY

A systematic study of the significant parameters affecting pneumatic tire

hydroplaning when operating on wet surfaces was performed.

Scale model tires were constructed using an open celled polyurethane foam.

The foam density was varied in order to match the load-deflection and footprint

characteristics of a pneumatic tire. A "dimensionless analysis" study was

performed to determine _t the combination of significant tire parameters

should be in order to facilitate correlation with full scale tires. A test

," program was then planned which would generate the required Input data to the

results of our "dimensionless analysis."

The model tires were tested on our "rolling road" facility. This appa,-atus

permits us to operate a '_lre at various loads, on a :moving belt surface while

maintaining a water t;ilm of any desired thickness, within our operating range.

The speed of the belt may be varied, and by varying the water flow rate through

our nozzle, a film of water of specified thickness is placed on the belt at

: synchronous speed so that there is no relative velocity between the belt and the
a=

water fl Im. By a process of Iteration a speed Is obt.ained whereby the wheel

spontaneously spins down at the desired synchronous film thickness.

'rests were performed on an 8-1nch diameter, smooth polyurethane tire

oDeratlng on a smooth road surface. The normal load was varied from 5 lb to

70 Ib and the water film thickness varied from 0.021 Inch to 0.125 inch. Both

spln down and spin up (rolling restoration) speeds were measured. The tire was

then modified to have 4 and 8 ribs of 1/32, 2/32 and 3/32 Inch depth, and the

spin down speeds determined for all combinations of tread depth, number of ribs,

load and water film thickness.

From the above tests it was determined that the tire "contact patch bearing

pressure" has the largest slngle effect on spin down speed. Incretslng "bearing¢

. _ pressure" caused the tire to "spin down" at a higher speed. Tire normal load
!
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has a moderate effect insofar as it increases the footprint bearing pressure

(on a polyurethane model tire).

The water film thickness has only a slight effect on spin down speed;

the hydroplaning speed varying inversely as approximately the one-sixth

power of film thickness.

Due to difficulty in varying the tire contact patch bearing pressure of

a polyurethane tire and relatlng it to the load and inflation pressure of a

pneumatic tire It was decided to test a small pneumatic tire.

An 8-inch diameter by 2.80 inch cross-section pneumatic tire was selected

for testing. This type of tire was tested in both the bald condition, and

' "_ "_!_) with a standard depth rib-groove tread pattern, on both a smooth road surface
i_'_': _ and a rough road surface. The rough surface was formed from strips of //150
, i_
,---'_ . grit abrasive cloth. The various combinations of tire tread and road surface

were tested for all combinations of tire Inflation pressure from 5 psi to
30 psi, loads from 5 ib to 120 lb and water film thicknesses from 0.021 to

0.125. Empirical equations relating tire pressure, diameter, normal load and

water flim thickness to hydroplaning inception speed (spin down speed) were

_ derived for each tire-road configuration.

The empirical equations were checked against some published experimental
I=

data. The correlation between prediced spin down speed from our equation and

measurad data on rut! size tires was found to be quite good.

• I NTRODUCTION

!-_ It has long been recognized that a pneumatic tire rolling over a wet

i : surface may encounter a condition whereby the tire rides up on the water film,

i_i much like a water skier or surfboard, resulting in a complete loss of trection.

i_: This condition ls created when the tire and/or road surface cannot drain the

_ water away from the advancing tire contact patch sufficiently quick. The

i, water forms a wedge or bow wave In front of the tire, which due to its dynamic

:;i:i dynamic pressure begins to support part of the wheel/tlre load and reduces the

_ ' contact patch footprint area in contact with the road. Thls condition Is
!
_ i generally referred to as partial hydroplaning. When the tire load is

iI '
t
_ 2

, !
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;=_ completely supported by the water film the tire has lost all contact with the

road surface as is said to be hydroplaning. In this state the tire has lost

all contact with the road surface and cannot g_nerate any tractive force. If

allowed to roll freely (l.e., front wheels) the wheel will spin down and
rotate at a slower speed, or stop completely.

Previous studies have shown that the effects of various tire and road
i_ parameters should be investigated more thoroughly.

i The Oavidson Laboratory and others have conducted both experimental z'_'a'4'5
and theoretical 6'7 studies in an attempt to isolate the effects of various

_ tire/road parameters such as inflation pressure, normal load, water film

!_ ,i thickness, tread depth and road surface roughness. This experimental program
8

was conducted or, the Davldson Laboratory Roiling Road Facility.
i'

_ This report describes the results obtalned by utillzing polyurethane

model tires similar to those reported on in reference 3. The operating range

of load and water film thickness was extended and the effects of the number

of ribs and rib depth were also investigated. A similar size pneumatic tire

i_ was tested for the complete range of load (5-120 lb) tire Inflation pressure

,m(5 to 30 psig) and water film thickness (.021 to .125 inch). In addition

_ this pneumatic tire was tested in the bald and full tread condition on both a

smooth road surface and a rough road surface.

Additional testing was performed to determine the relationship between

hydroplaning Inception speed (spin down) and rolling restoration speed (spin up)

whlch were previously found to differ considerably.

The author wishes to acknowledge the considerable assistance given by

: Major James R. Allred during the test program and data analysis. Mr. Awnl Boutros

provided needed assistance In generating a computer program for data and
f,

_, error analysis. Also, Miss Nancy Crane provided editorial assistance in

i addition to typing the manuscript.

3i
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SYMBOLS

a accelerat ion

A dlmens ionless constant

b tire tread depth

B d_mens ionless constant

B.P. tire bearing pressure

c exponentials used in dlmensionai analysis, i
C dimensionless constant

c dimensionless constant

D tire undeflected diameter

F force

_' ) vertical lift force
_._" Fv

--"" '0: FH horizontal drag Force
"_':., g acceleration of gravity

h fluid film thickness

_. I length

m exponential used in dimensional analysis

NHR mean hydraulic radius of channels between surface asperities

"'" P tire Inflation pressure_ pressure

q exponential used in dimensional analysis

Q water flow rate

r tire undefiected radius

v ve I oc i ty

V belt speedp ground speed, vehicle Forward speed

Vcr.d spin down or critical hydroplaning speed
V spin up speed

cr-u

w tire contact patch width

W vertical load on tlre

model scaling factor

I_ fluid dynamic viscosity

_i dimensionless parameter groups (Bucklnghamts Theorem)

_i parameter groups held constant

" I_ fluid density
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ANALYSIS

In order to set up a systematic test program it is necessary to determine

what the s|gnificant parameters are. In this program scale model tires are

being utilized &nd hence it is more convenient to express the primary variables

in terms of dimensionless parameters.

By designing the test program so as to vary only one of the dimensionless m

parameters at a time, while maintaining the others constant, a relationship

between the variables may be obtained.

By expressing the relationships in terms of dimensionless parameters

correlation with full scale data is facilitated. The individual input
• _ ¢; p

_:,_ variables such as wheel diameter, tire pressure, etc., do not have to be

scaled by various powers of the scale factor.

_-_' The following is a list of the independer:t variables considered to have

_ a significant effect on the hydroplaning inception (spin down) speed of a

i pneumatic tire rolling freely on a wet surface. The dimensional units

i considered are the FLT system, i.e., force is in pounds. Time is in seconds,

,distance is In feet,

S_.y._o._l Descr I pt ion FLT Units

I) tire undeflected diameter L

_i w tire section width L

h fluid film thickness L

_/ vertical load on tire F

P tire inflation pressure FL-a

b tire tread depth L

I_IR road surface HHR L

p fluid density FL-_

+, _ fluid viscosity FL-2T
/

'_ g acceleration of gravity LT-_
.t

V hydroplanln_ inception speed LT
•"" : (spin down)

%

5

t
t

-" 1 " .__-.---=---...... --=_" " ,=_ ........... :__" -:" ..... - :- .............. "_'_" " - - -

1974003931-TSA10



Using the techniques of dimensional analysis a relationship expressing

the dependency of spin down speed (Vcr.d) on the above variables may be derived. _

If we let

V = f(D,w,h,W,P,b,HHR, t_,_,g) (l)

Then on rearranging terms and assigning exponents to each of the variables

_. I = Cc_Vcl I)ca wca hc4 Wcs Pc6 bc7 HHRc8 pc9 I_c_0gczz (2)

_ where C= = constant

_!i"_"_ .¢ c z to c_1 = unknown exponents
_T. _ , '_

.:., Equation (2) expressed in terms of the dimensions associated with each

' variable is:

c z ca ca c_ cs c6 c_ ce (FL.3)c9 c c1_0 = (LT-z) L' L L F (FL-a) L L (FL-_T) z0 (LT-a) (3)

,, Grouping each of the three types of units (F_L,T) together and equating them

to zero yields the following three auxiliary equations.

F: 0 = c_+c6 +c_ +c_0 (4)

L: 0 = cz a 3 + c_ -2c6 + c? 8 - 3c_ - 2c_0+ Czz (5)

T: 0 = -c= + c_- Zczz (6)

Since we have eleven unknowns and only three equations available, arbitrary

values must be assigned to 8 of _he unknowns. The selection of unknowns to be

assigned values and the value assigned is arbitrary provided the determinant

of the coefficients of the remaining terms is not zero.

6
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Selecting c_,c4,c:,,cc,cT,c_,c:_ and czz as our candidates to have values

assigned to them we obtain for the determinant of the remaining coefficients

0 0 I

1 ! -2 = I (7)

-I 0 I

Since the determinant is non-zero our selection is valid and the values

to be assigned are arbitrarily chosen to be zero for a11 terms except one of

them which is assigned to the value of 1. The auxiliary equations are then

?__ solved and a _ term obtained. By repeating this process unt|1 each of the
_,_, unknowns have been assigned the value I we obtain a11 our _ terms. Note that

IL_/ _ if values other than zero and 1 had been chosen we would obtain _ terms that• can be reduced to the same value as when zero and 1 are chosen.

_t

c3 = I Ce = 0 C9 = 0

• . C4 = 0 C_ = 0 ClI = 0

Cs = 0 Ca = 0

Substituting these values into equations (4), (5) and (6), and solving yields

F: 0 = O+ 0 + 04 czo

L: 0 = c z + c 2 + I + 0 - 0 + 0 + 0 - 0 - 2cz04. 0

T: 0 = -c 1 + c_0- 0

-- 0 ca = -1 and ca = !Therefore cz = 0 , ct0 ,

and

TT m Wa "G (8)

7
I
t
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iI_ Assigning the follov_ing dlfferent combination of values to the 8 unknowns:

i_ % = 0 ce = 0 co = 0

i_ c4 = l c7 = 0 cll= 0
::_

. _-

Crs = 0 C8 = 0

i substituting into equations (4), (5) and (6) again and solving yields

,_! F: 0 = 0+0+0+%

_T'_' . : L: 0 = cz +c2 + O+ 1 - O+ O+ 0 - 0 - 2c_0 + 0

_ :_ , T: 0 = -C 1 4-c10- 0
_" ,;

' ii:._ Therefore c=0 , ,
= 0 c_. = 0 c2 = I and c 4 = 1

and
h

11b= _ (9)
o ,

Assigning cs = 1 and the others zero and repeating the above solution

we obtain another n term. We then assign cs = 1 and the others zero and

solve for the next n term. This process is repeated until the last unknown (czz)

has been assigned the value I.

Proceeding as above we obtain the following = terms.

11 w ha _'_ _b ='_

• W PD

c Vcr.d i)l_ _d =

b MHR
11 = -- 13" = --'--,
e D f I)

= • pD2 nh =
11g i_Vcr.d Vcr.d

8
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A general solution may be written as

gl) F w h W PD b MHR pD_I (10)E!I v2 = (_' _ ' v0--_' _-_' _'-6-' _v"

The above dimensionless TTterms can be rearranged as products, quotients

or powers of each other to simplify them, and facilltate their use in our test

program, without changing their validity.

We therefore let

V2

_ = [nh]-I = g'-5' (11)
_a i

. _ = [_dl[_g]-1= P_2D_F.3= _.P (t2)_V pD_ oD
.f

h (13)%= nb = D'

% _- [_][_g]__ w .._ = _ (14)= VD""_pD_ pDa

TrB = TI Wa = _ (is)

= = _ (16)
76 = [nc][TTg][_h]-I _ _-_ I_g

_7 = n = be _ (17)

n8 = nf = MH_...RRD (18)

The general so|ution (10) may be rewritten as

V'_ • F('_'D h W w .._ b MHR90 ' D' T6_' 0' _9 0 ' -3-) (19)
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Due to experimental limitations and practical considerations some of the

terms were not varied in the test program. The % term relating fluid density

and viscosity was omitted since we are only concerned with tires hydroplaning

on water, and for a narrow temperature range, where these variables may be

considered as constants. The TT_term was not varied due to the limited

availability of simi|ar tires having different section widths.

Modeling Theory

The relationships between model and prototype can, in general, be best

established by the use c_ a series of equations which develop the scaling
.!

_ factor as a multipller between measured model parameters and predicted prototype
results. The following is the approach used in relating model tire hydroplanln 9

_'_ tO that of the full size tire. A more complete treatment of modeling theory

_ can be found in reference 9. The approach below is usually called "Froude scaling."

If we chose scale factor _ to represent the ratio of model and prototype

linear dimensions and the subscripts m and p to refer to model and prototype

_i_ then basic geometric simulation is represented by

Lp = Lm (20) .
where every dimension In the model differs from the prototype by the factor _.

If the density of model and prototype is to be identical (no_ _lways

necessary but convenient), then

H H

Lpa Lm_

or

M = M (21)
p m

10

1974003931-TSB01



C '

For weights:

w = Mg

But gravity is constant for both model and prototype in this case. Therefore

Wp = Mp9 = L3 Mmg = L3 Wm (22)

From Newtonls Law:

Fp = MpAp= _._Fm= _'_(MAre)
,/ "_, , M M

_"'..."_ A " _.3 (_)Am = X3 (_M)Am
_ P p m

:._'_. therefore

_' A = A (23)
p m

Therefore accelerations in both the model and prototype are the same, and

s inee

L

T2

Therefore L L
_p_. = m
T _ T _

p m

L

L-P- _ = LT _= l"m
Tp m

m

therefore

_ T = .A" T (Z_)
p m

• i,e,, ev,;,_ts occur n_re rapidly with a scale model,

i ,. 1!

1
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For velocities,

L
; T

i_ therefore
i_ L _L

L P V_' Tm
'_ P

!_ For ground pressure or tire inflation pressure:

_ W
i' L2

:,_,. _ or W -------_awm (26)
_' / P = _ = X_p a = X Pm

•; " " P Lp m
_._

_" _:_ i.e., the ground pressure or inflation pressure of a model should be less than

that of the prototype.

Once the scaling relationship for the three primary units (weight, |ength,

and time) have been obtained, any other parameter can be obtained by writing

the equation in terms of its dimensionsD then scaling each individual dimension

and collecting terms. This is the method used to obtain the relationship for

velocity and inflation pressure, equations (25) and (26).

HODEL

The model tires were fabricated of an open cell polyurethane foam and

coated with several layers of an impervious paint formulation (urethane)

specifically designed to withstand the high degree of flexure thot would be

experienced by the model tire under heavy load. This coating serves the dual

purpose of protecting the open cell polyurethane tire from abrasion and also

seals the porous surface.

q

12
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The tire is of rectangular cross section having a diameter of 8 inches

and a section width of 3•25 inches. The polyurethane foam density was varied

so as to model the contact patch bearing pressure and load-deflection

characteristics of a representative full scale type III aircraft pneumatic tire. 1

The model tire was constructed with a smooth surface (bald). In addition the tire

was modified to have 4 and 8 ribs with a depth of 1/32, 2/32 and 3/32 inch•

These ribs had a rib width to .qroove width ratio of unity (Figure i)•

An 8 lnch diameter by 2.80 inch section width pneumatic tire was chosen

for testiJ_g as it allowed us to vary the inflation pressure. This tire is a

"General Jet-Rib," nylon cord, 4-ply tire (Figure 2). The tire is intended

to model a 40-inch diameter aircraft tire• This will give us a scale factor

_ ,:i "," _ (_) of 5 based on the tire diameters

_, _ APPARATUS

The "rolling road ''e (Figure 3) consists of a flat table test section

8 feet long by 3 feet wide over which a cord reinforced with rubber conveyor

belt is run. The rubber belt is stretched over a pair of 20 Inch 0. D.
i

hollow cylindrical drums• Power is supplied by a 40 HP direct current motor

and timing belt which drives one of the drums. The "idler" drum is slightly

crowned to stabilize the belt and prevent It from "walking" oft: the pulley.

The drive drum Is rubber lagged w;th a herringbone groove pattern to prevent

it from hydroplaning at high test speeds (a problem encounb_,red with a previous

smooth drive drum). The DC drive motor is capabl_ of providing variable belt

surface speeds of up to 6000 ft/min, by means of a motor generator set and a

closed loop feedback system. Belt speed is measured by means of a OC tach

generator mounted on the drive drum axle.

The rubber belt was used to slmu',tate a smooth road surface. Latter

testing Involved bonding an abrasive cloth to the rubber belt surface to

simulate a "rough" surface. The abrasive cloth was bonded to the belt in

4 inch wide by 2 foot long strips. 1his was necessary to avoid separation of

, the bond due to differential stretching of the belt as It passed over the drums.

13
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In order to simulate a wet or flooded roadway the "rolling road" has a

water supply system capable of laying a 12 inch wide film of water, of

variable thickness, on the road at a synchronous speed. This system consists

of a 25 horsepower centrifugal pump, piping, water nozzle, control valves,

flow measuring instrumentation and a 500 gallon water reservoir. Water film

thickness is fixed by adjusting a hinged plate at the discharge end of the

nozzle (Figure 4). By inserting different rods of specific diameters into a

_ recessed groove above the nozzle plate the opening may be adjusted for any

_ required water film thickness. In order for the test tire not to see any
relative motion between the water and road surface it is necessary to adjust

the water flow rate to match the road speed and desired film thickness settingi

L_;,._= . , of the nozzle. From simple geometry and conservation of mass principles the

_"_ following equation is obtained relating belt speed (V), film thickness (h),

' film width (w) and water flow rate (Q).
Q (9al/min) = 0.625 V (ft/min) w (ft) h (in)

or

Q = 0.625 V h where w = I ft water fi1=nwidth

Figure 5 is a plot of required water flow rate versus belt speed for

synchronization, for various water film thicknesses. The water flow system

is limited to a flow rate of 320 gallons per minute.

The test tire Is mounted on a modified "Grumman Mohawk" aircraft nose

wheel strut. The strut ls attached to fixed ceiling rails by a pair of

roller bearing s. LongitudiNal motion is prevented by a parallelogram linkage

which is also capable of measuring drag force. The tire and lower portion of

the strut are free to move vertically with respect to the fixed upper portion.

To achieve minimum frictional drag in the vertical axis the tire and lower

strut are separated by a bronze sleeve bushing which ls rotated about its

vertical axls by a small electric motor. This reduces the vertlcal friction

to approximately 0.2 pounds.

i

14
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The tire is counterbalanced and loaded by a pulley and weight assembly.

Removing counterbalance weights increases the vertical load on the tire to

a maximum attainable load of 120 pounds. Vertical deflection or heaving of

the wheel assembly can be measured by a rotary potentiemet_r mounted to the

upper strut and connected to the lower strut via a string. The rotational

speed of the test wheel is measured by a DC tach generator which together

with the signal from the road speed tach is displayed and recorded on a

Sanborn pen recorder.

TEST PROGRAM

i , ,) Polyurethane Tire

" The test program consisted of determining the critical hydroplaning speed,

_,;-_ ! both spin down and spin up, for an 8 inch diameter by 3.25 inch wide rectangular
cross-section polyurethane tire. The load on the tire and water film thickness

was varied to determine their effect on spin down/up speeds.

The tire was modified to have a ribbed tread pattern in order to determine

the effects of tread depth and number of ribs. Tests were performed with an

8 rib and 4 rib tire having rib depths of 1/32, 2/32 and 3/32 of an inch. The
=

ratio of rib width to groove width was maintained at unity for both tread

configurations. The test conditions were Identical to that of the bald tire

in order to allow a comparison. Tlre footprint measurements were taken for

each combination of load and tlre configuration.

The test conditions for each tire configuration are listed in Table |.

Pneumatlc Tire

tn order to determine the effects of tire inflation pressure an 8-inch

diameter by 2.80 Inch cross section "General Jet-Rib" tlre was selected.

This pneumatic tire was tested in the bald and full tread condition on the

"o

15
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smooth road surface, for the full range of tire inflation pressure, tire load,

and water film thickness. The rolling road surface was then modified to have

a textured surface and the abov6 test conditions repeated to investigate the

effect of surface texture_

The test conditions for each tire configuration are listed in Table II.

A listing of the test conditions In terms of dimensionless = groups is

presented in Table III.

"_ TEST PROCEDURE

_ The method of determining the spin down speed is basically a process
r

_z _ of iteration and consists of the following ste.pSo
, I) The tire inflation pressure and wheel load are set._%' _

_,_ " 2) A deslred water film thickness is determined.

3) An estimate of the spin down speed is made based on experience.

_i 4) The rolling road speed is set at a speed slightly below the
estimated spin down speed.

5) The water flow Is adjusted for synchronization and film depth
at the estimated spin down speed utilizing the flow graph
shown in Figure 5.

6) The road speed ls increased In small increments until the
recorder trace indicates a loss In wheel speed.

7) If the road speed determined In (6) differs from the estimated
speed, a new estimate is made and steps (4) to (6) repeated.

= The final value of spin down speed, which is when the wheel spins down

at the estimated speed, is obtained from the pen recorder traces. Thls

; recorder is ca|;brated with a hand tachometer prior to each series of tests

i and periodically during the course of testing.

I_ESULTS

_r Polyurethane Ti re '

i Footprint measurements of the tire contact patch area showed that, for

the polyurethane tires there was no widening of the footprint with increasing

! load, rather the footprint increased in length In proportion to imposed load,

"_ ! maintaining a constant bearing pressure

P
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The results of the hydroplaning tests for the seven configurations of rib

depth and number of ribs are shown graphically in Figures 6 to 21.

Figures 6 and 7 are graphs of spin down and spin up speeds versus load,

wlth water film thickness as a parameter, for Lh¢ bald tire. A comparlsoP of

the two graphs shows that the spin up speed or rolling restoration speed is

considerably lower than the spin down speed, the difference being approxi-

mately 20 percent. The significance of this observation is that once spin

down speed has been attained, or the vehicle brakes applied to initiate

hydroplanin9, the vehicle must then slow down approximately L0 Fercent before

rolling restoration occurs. This deceleration requires considerable distance

as the wheel has no traction and hence the brakes are ineffective. A compari-

# . son of the spin up/down data for the 8 rib and 4 rib tire, with 1/32, 2/32, Gr

3/32 inch tread depth, shows that the difference in speeds is generally 20 to

30 percent. This can be seen by comparing Figures 8 and 9, lO and II, and

each of the following pair of curves up to Figures 18 and 19.

Figures 20 and 21 are log-log plots of spin down speed versus load for a

water film thickness'of 0.201 inch. Tire tread depth is a parameter. The

hydroplaning inception speed is shown to increase exponentially with tread

depth for both the 4 and 8 rib tire.

Figure 22 is a cross plot of Figures 20 and 21, on cartesian coordinates,

of spin down speed versus tread deF with water film and wheel load held

constant at 0.021 Inch and 30 poun0=. This graph illustrates the differences

between the 8 rib and 4 rib tire as a function of tread depth. For very shallow

tread depth there is little difference in spin down speed. However, as the

tread depth Is increased, the larger number of ribs is shown to be quite

superior. The 8 rib tire has a considerably higher hydroplaning Inception

speed for deep rlbs, the advantage decreasing to zero as both tires approach

the bald condition. Since the rib area of both tires were the same, this

difference cannot be attributable to differences in bearing pressure.

; 17
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Figure 23 is a cross plet on log-log coordinates of the data shown in

Figure 6. Here Vcr.d is plotted versus water fil;n thickness (h) for the bald

tire with a load of 30 pounds. From the slope of the line it can be seen that

hydroplaning speed varies inversely as approximately the one-sixth power of

ti_e water film thickness.

i"

_' Pneumatic Ti re

The pneumatic tlre was tested in four different configurations, namely:

I) Bald tire on smooth road surface.

=_14 2) Full tread depth (5 rib) on smooth surface. -

'_ 3) Bald tire on rough road surface (150 grit).

; 4) Full tread depth tire on rough road surface.

The test conditions for all four configurations in terms of primary

variables are shown in Table II. Table III lists the test conditions in terms

of the dimensionless groups.

Configuration I -.Bald Tire - Smooth Road

Measurement of hydroplaning Inception speed was made for 277 different

sets of test conditions. Measured test data for these sets are listed in Table

IV. This data is plotted in terms of the corresponding dimensionless _ terms

listed In Table III in order to generate a prediction eo",tion. Figure 24 is a

plot of Trz (V_'/gO) versus % (P/pD) on log-log coordln : _ith _a (h/D) as a

parameter, _r4 (W/pO3) is held constant.

Since the data forms a family of straight fin., _'- equation of the

form _x = BTLan may be obtained for the lines where B = i ;c.--, ept and n = slope

of the line,

From Figure 24 we obtai .

'nz.= 29 _'a?B (27)

where _a = 0.00938 and
eem

_- _4 = 2.166

18
i

1974003931-TSB09



The value of the intercept "B" can be found by several methods. It

is equal to the value of the "ordinate _ when the _'abscissa" is equal to one,

or the equation TTt = BT_n can be solved for B by substituting a set of values

of TT1and TT=, and the value of n, from the straight line, into the equation.

Depending on the value of the axis the most convenient method of

determining tSB", the intercept, is used.

From Figure 25 which is a log-lo 9 plot of n_ versus n3 with _ and

94 held constant at 69.28 and 2.166 we obtain the relationship

nl = 48 n=-.a4s (28)

,, ) From Figure 26 which is a log-log plot of nzversus rr¢ with _= and; :=" _a held constant at 69.28 and 0.00938 we obtain the relationship

' _z = 116 TT4"_ZZ for _ _ 2.166 (29)

and

n_ = 133 _.zo_ for n4 e 2. 166 (30)

The curve in Figure 26 is composed of two straight lines and hence

we have two regions of concern.

= Equation.s (27), (28), (29) and (30) are combined according to the .

.... relationship 9:

_" T'r], i= _ .....

• to yield
_ _rt = 7/_ 2 _ .zvs 1.ra-.z4s n4.azz for _ s 2.166 (31)

_ 8.94 _=.a'/s ns-.a4s _4.zoa a Z,166nz lee for n4 (32)

In terms of the primary Input parameters, equations (31) and

(32) become

i
"_. , r_==._=_d o 8 '7t_ ,,246 o_.1.1

• gD = 7.42 [ ] [ ] [ ] for [ ] _2.166 (33)

19
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and

V 2 .375 " ,245 .I0_

,#,-/ gD =

_j Equation (33) gives predicted values of Vcr.d which have a maximumerror

o£ 14.8 percent and an average error of 3.7 percent when compared to the

experimental data. Equation (34) has a maximumerror of 14 percent and an

average error of 3.7 percent in predicted Vcr.d versus experimental data.

!
Cpnfiquration 2 - Treaded Tire - Smooth Road

• ' ) The treaded tire has five ribs with a rib depth of 3/32 inch. This tire

was tested for 136 different sets of test conditions, each set corresponding

to a similar test for configuration !. The test data for this configuration

is listed in Table V.

Figures 27, 28 and 29 are log-io9 plots of w_ versus % , _ , and _4.

The method of obtaining the component equations is similar te the previous

configuration and yielded:

From Fig. 27 _z = 21.5 T_'sz_ (35)

From Fig. 28 nz = 35 _a-'ae° (36)

From Fig. 29 nz = 164 _4 "482 for TT4< 1.62 (37)

nl = 237 _,-._9_ for _, z 1.62 (38)

The component equations are combined to yteld:

nt = 2.9b ' %.s1_ Tr-.as0 n4.4e_ for _4 _ 1.62 (39)

nz = 4.24 ua'sx7 T73-.oe0 TT4-.2_a for _ z 1.62 (40)

20
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Or in terms of the primary input parameters

=517 "=380 ,482 t_/

and

m

Vacr'-----_d= 4,24 [ ] [ ] -- for [W > 1,62 (42)
gD pD_

Equation (41) exhibits a maximum error of 34 percent and an average

error of 10.5 percent bet_en predicted value of Vcr.d and test data.

Equation (42) exhibits a maximum error of 19.7 percent and average error

.°" of 6,4 percent,

_'_
4'

_-_ r Co.n.figurati°n 3 " Bald Tire - Rouqh Road

The road roughness is obtained by bonding strips of 150 grit aluminum

oxide cloth around the len.qth of the belt.

Heasurements of spin down speed were made for 90 different sets of test

conditions, each set corresponding to a similar set in the configuration I and

2 series. The test data for this configuration is shown in Table VI.

Figures 30, 31 and 32 are log-log plots of _z versus t_ , _a and '_4. The

method of obtaining the component equations is similar to the previous

configuration and yielded.

From Fig. 30 zTz = 23.2 %'_°7 (43)

From Fig, 31 _z = 26.8 _3-'4ae (/_)

From FIg, 32 nz = 189 _4 "z°e (45)

The component equations are combined to yield

•_" nl = 2.78 T_'s'_" %-.4;,_ (46)

,, 21
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ii "
or In terms of primary input parameters

Z! v2 h]-.4 8 W .lOC = 2.78 [ [ ] (47)
_ gD

Equation (47) exhibits a maximum error of 17.2 percent and an average

error of 5.8 percent in Vcr.d when compared to our experlmental data.

Cpnflquration 4 - Treaded Tire_- Rou.qhRoad

, The objective of this series of tests was to _enerate sufficient data

,.. _ so as to be able to derive a prediction equation for thls configuration. By

varying the surface roughness it may have bec,n possible to include a "roughness"

.... factor in the prediction equations to account for surface texture. The speed

_- limits and water flow limits of the rolling road apparatus v,ere exceeded and

only 9 data points generated. This data is listed in Table VII.

DISCUSSION

During the course of testing of the various tire configurations certain

phenomena were observed which are worthy of comment.

The "bow wave" and forward splash would not always dis._ppearwhen the

wheel "spun down." It appears that the test conditions _,,chas water film

thlckncss, load, etc., have an influence. The forward splash and bow wave

would disappear or be reduced under certain test conditions but not for other

test conditions.

The wheel would spin down to a complete stc_)under certain test ¢ondltions

(thick water films and a rough road surface) but generally slowed down to

some "Idle" speed. The Initial deceleration of the wheel on spin down Is

usually quite rapid and on the order of I000 feet per second for our 8-1nch

diameter wheel then decelerating at a reducea rate until its idle speed is

reached. Once the wheel is "idling" in the spun down condition the idle speed

22
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t =1_'

is Independent of road speed. The wheel will continue to rotate at a fixed

speed for any value of road speed prnvided we do not slow down below the

rolling restoration speed.

When the test data on the 8" pneumatic tlre, for various combinations of

load, inflation pressure and water film thickness, are substituted into the

prediction equations generated,the calculated value of spln down speed

correlates well with the measured values.

The prediction equations for a bald tire operating on a smooth surface

(Equations 33, 34) were compared to data published by Staughton _° for a bald

cross-ply tire. The film thickness, load, tire inflation pressure and wheel

diameter (5.20-10) used by Staughton were inserted into Equation (33) and,

the pred;cted values calculated, as well as the experimental values _°, plotted

versus tlre pressure in Figure 33. For reference, the values obtained from

the equations for configurations 2 and 3 (treaded tire - smooth road and bald
t

tire - rough road) are also shown. The Staughton data is for a bald cross ply

5o20-lO tire operating at a load of 500 pounds on a water film thickness of

0.374 inch. The correlation between the prediction equation and full slze

test data from Staughton is quite good.

The prediction equations for configurations 2 and 3 produce lines that

are quite close together and higher in speed than that of configuration I.

This sugg_,sts that the drainage in the tire-road surface interface is similar

for the treaded tire - smooth road and bald tire - rough road combinations.

These predictions do not agree completely wi th the widely accepted

Horner-Dreher prediction s (plotted as a dashed line in Figure 33). Other

researchers11,12 also have found hydroplaning trends to be less than the square

root of pressure found by Hornet and Dreher (see the line of Staughton's 1°

data, also plotted on Figure 33).

23
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CONCLUSIONS

Polyurethane Tire

!) The spin-up speed was determined to be approximately 20 to 30
percent lower than the spin down speed for both the 4 rib and
the 8 rib tlre.

2) For very shallow tread depth there is little difference between
a 4 rib and an 8 rib tire. As the tread depth is increased, the
larger number of ribs is quite superior; i.e., higher spin down
speed, for the same ratio of rib area to groove area (Figure 22).

3) Spin down speed varies Inversely as approximately the one-sixth
.... ; power of water film thickness, a fairly mild relationship.

_-_-..... 4) Footprint measurements of the tire contact patch area show that
;. I the nominal contact patch bearing pressure remains in effect,_.. ,_'

i ._.' '_ constant with increasing load, The footprint aspect ratio

_, (length/width) changes, however, and it is believed that this isi'--_ responsible for the change in s]ope of the spin down versus load
_-_ curve.

Pneumatic Tire

1) The effect of tire inflation pressure is significant and approximately
the same for both the treaded tire - smooth road and smooth tire -

rough road combination, it is less significant for the smooth tire -
smooth road combination, being only slightly more significant than

the other variables. In all cases, Vcr.d increases with increasing
tire inflation pressure.

2) The effect of water film thickness is more pronounced for the smooth
tire - rough road and treaded tire - smooth road configurations
than for the smooth tire - smooth road. In all cases, the spin down
speed decreases with increasing water" film thickness.

3) Spin down speed does not necessarlly increase with wheel load
(Equations 41, 42). Log-log plots of the spin down speed parameter
versus the load parameter show two load regimes for the configura-
tions I and 2. The spin down speed increases with increasing load
up to some point (he Ib for the 8 inch diameter wheel) then either
Increases at a slower rate or decreases with further load (Figures
26 and 29).
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Pneumatic Tire (cont'd)

4) The method of dimensional analysis combined with a systematic test
program has resulted in data from which prediction equations can
be, and have been generated, The equations correlate quite well
with our test data for an 8 inch diameter wheel and published data
for a 20 inch diameter tire (5,20-10),

RECOMMENDATIONS

I) A series of tests be performed using pneumatic tires having different
tread depths in order to include this effect into one prediction

;; i equation.,..
, 2) A series of tests to extend the range of road surface roughness

-., should be performed in order to develop a relationship between
-_:'_ surface roughness and spin down speed.

2) A somewhat larger pneumatic tire (10-12 inch diameter) should be
used for future testing so as to minimize distortions due to our
inability 4o scale every variable simultaneously, and to reduce
the effect of relatively large carcass stiffness on small diameter
tires,

"=i

i Davldson Laboratory

i Stevens Inst| tute of TechnologyCastle Point Station
Hoboken, New Jersey, 07030
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Table !

8" Diameter Polyurethane Model Tire Test Conditions

" Su_t Smooth Tread trace

(Spin Down and Spin Up Test Points)

Load Water Film Thickness h lin)
_ o.bl._._Z2' o.o2"!'" _ _

r-_ 5

2_
.g 20

8 Ribs x 1/32 Inch Deep - Area Ratio 1:1

(Spin Down and Spin Up Test Points)

5
IO

15
20

25

30
4o

so
55

26
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Table I [Cont'd]

Load , Water Film Thickness h (in)
w (ib) o.oi.__3 0.02_.__! 0.o45 0.075 o.12.____s

8 Ribs x 2/32 Inch DeeP

(Spin Downand Spin Up Test Points)

5

1O

" 15

20

25 "'---

•_ .,j_, 3o

_._ _o

N, so
55 _"

8 Ribs x _/32 inch Deep

(Spin Downand Spin Up Test Points)

5

10

20

25

30

40

50

e

27

1974003931-TSC04



, %,

Ill'

Table I [Cont'd]

Load Water Film Thlckness,..h (in)
W ( Ib) O.0'1._.._2 O.02._..! O.045

,4 Rlbs x 1/32 Inch Deep.- Area Ratio 1:1

(Spin Down and Spin Up Test Points)

5

" i0
12
_ 20

_ 3o
[-5

N 5o

;_ " 14 Ribs x 2/32 Inch Deep

_,. (Spin Down and Spin Up Test Points)

5
10

2O

30.

5O _,

4 Ribs X _/_2 Inch Deep

(S_in Down and Spin Up Test Points)

5
I0

20

30
50
60 "-'--

28
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Table II

Pneumatic Tire Hydroplaning Hodel Test Conditions
DLmensiona I Variables

p, Iblin:'

Configuration (1) Bald Tire - Smooth Road

5 5 -* 90 .021, .045, .075, .125

!0 5 " iO0 ,, ,I m,, ,,

' 15 5 " I00 " " " "
d¢

', 20 5 "* 120 " " " " "

_. 25 5 " 120 " " " "

30 5" I10 .021, .075, .045

Configuration (2) Treaded Tire - Smooth Road
5 5 " 80 .045, .075, .125

10 5" 90 "

15 5 -' 100 "

20 5 " 120 "

25 5 " 120 .075, .125

Configuration (3) Bald Tire - RoughRoad

15 5 _ 90 .Ok5, .075, .125

20 5 -' 80 "

25 5 " 90 "

Configuratlon (4) Treaded Tire - Rough Road

15 5 - 35 .075

15 10._ 20 .125

• ! ,i

*Veltlcal load applied In 5 lb Increments 5 through 20 Ib, and
• I0 Ib Increments 20 through 120 lb.

i ,

-il 29
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Table I I I

Test Conditions (Dimensionless Groups)

!
30
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; Table III [Cont'd]

Configuration 2

t •

0.271 17.32 3g•(:_ 51.96 69.28 86.60 00_63 00938 01562

Sj

_ 0.812

_, 1.083
[,

'_ 1.62g
_ '

_¢ _ _, 2. 166

,?i:.,! ,.707
_ 3.790

: g.331 _ __
g.873 _.: ,.__

22" 5.gig ,,

6._97 _ C- " '

31
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Table III [Cont'd]

Confi9uration 3
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Table IV

Configuration 1 - Test Data

8" x 2°8" pneumatic tire, smooth tread,

smooth surface, 5 _ 30 lb/in 2 tire inflation pressure

Water Film Hydroplaning Speed Vcr_d (ft/min)
Th|ckness Load ' '

h (in) W (ib) _ _ 1__psi 20 psi 2_; psi 3_..0psi

0.021 5 2000 1925 2300 2300 2450 2450
IO 2400 2400 2400 2500 2650 2650

15 2500 2750 2600 2650 2775 2800

20 25O0 2925 2925 2900 3000 2950

.... ¢ /*" ) 30 2750 2950 3200 3250 3400 3350

6,....•, _0 2900 3100 3200 3350 3600 3625
;:. !o_ Z

_o 50 3050 3150 3200 3450 3700 3750

.... _ 60 3225 3225 3325 3525 3750 3800

7o 3550 3300 3250 3550 3900 3850

80 3625 3425 3350 3525 3900 3900

90 3700 3550 3350 3550 3950 3950

100 - 3675 3500 3550 4050 4100

!10 - - - 3675 4200 42OO

O,045 5 2200 2500 2600 2725 2875 -

,- I0 2600 2900 2900 2950 31O0 -

_T i 15 2675 3100 3150 3175 3250 -

_: 20 2750 3250 3400 3400 3550 -

.... 30 2900 3275 3475 3650 3700 -

4O 3100 335O 35D0 3650 3800 -
!_-il 50 3250 3520 3550 37OO 3725 -

i_i 60 3300 3650 3625 3750 3675. -
IF!.

i_-_: 70 3300 3650 3650 3750 3750 -
_il 80 3350 3625 3700 3800 3800 -

_i.

90 - - 3725 3825 3825 -

Io0 - - - 3825 3825 -

-_t. *, 120 - - - 3800 3850 -

"ii
33
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Table IV [Contld]

Water Film Hydroplaning Speed Vcr.d (ft/min)
: Thickness Load

h (in) _ _ 5 psi lOps! 1_ psi _ 25 psi

_ 0.075 5 1800 2100 2350 2450 2475 2700

i_ I0 2100 2425 2650 2725 2775 2925

_ 15 2100 2800 2850 2850 2950 3050

!_ 20 2300 2900 2950 3025 3100 3200

30 2575 2800 3175 3300 3375 345040 2850 2950 3175 3375 3525 3600

50 2900 3050 3175 3350 3525 3600 .
,, _ •._ _ 60 2925 3100 3200 3350 3550 3600

=_ 70 2950 3200 3275 3400 3525 3575
80 3050 3250 3325 3425 3550 3600

_ i 90 - 315o 3400 3500 3600 3650
_ I00 - - 3400 3525 3625 3650

I'10 - - - 3550 3700 3700

120 - - - 3575 3700 -

0.125 5 1775 2025 2175 2350 2375 2450
10 1975 2375 2500 2650 2725 2800 .

15 2075 2475 2600 2750 2850 2925
20 2125 2525 2750 2925 2950 3050

30 2325 2775 2950 3125 3225 3225

40 2475 2700 3000 3225 3375 3275

50 2625 2800 2900 3200 3450 3400
60 2675 2775 2925 3125 3425 3525

70 2725 2925 2950 3100 3400 3450

80 2775 3000 3025 3100 3375 3450

90 - 3050 3100 3150 3400 3500

100 - - 3125 3175 3_oo 3500

I10 - - - 3250 3400 3500
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Table V

Configuration 2 - Test Data

8" x 2,8" pneumatic tire, 5 rib circumferential tread,

smooth surface, 5 - 25 ib/in 2 tire inflation pressure

Water Film Hydroplaning Speed V (ft/min)
Thickness Load cr-d

W (Ib) 5 psi. 10 psi l_.__p..s_, 20 psl

O.045 5 2600 3075 3i O0 3175 -

10 3500 3525 3650 3675 -

15 3575 3500 4000 3950 -

20 3500 3750 4150 4275 -

__. 30 3400 3350 3900 _J+O0 -

.... : 40 3200 3500 3675 410o -

_/ 50 3050 3475 3750 3850 -

_ 60 2925 3200 3750 4150 -
70 2750 3125 3500 - -

80 2675 3 !o0 3350 3825 -

90 - - 3225 - -

100 - - - 3600 -

120 - - - 3450 -

O.075 5 2550 2525 2600 2575 2675

10 2850 2850 2900 2925 3 !O0

15 3 _50 3200 3225 3400 3375

20 3050 3375 3500 3650 3650

30 29?.5 31O0 3525 4000 4050

40 2925 3150 3250 3825 4150

50 .... 3825

60 2700 2925 3300 36oo 3775

80 2550 2875 2975 3575 3825

90 - 2825 - - -

I00 - - 2800 3350 3600

, 120 - - - 3200 3400

' 35
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i Table V [Cont_d]

_ (ft/min)_,_ Water Film Hydroplaning Speed Vcr.d
_ Thickness Load

_ h (in) _ _ 10psi _ _

;; 0.125 5 2100 2125 2225 2300 2350

!-_ 10 2450 2625 2725 2650 2750

i_ 15 2700 2875 2900 2950 3075
20 2825 3075 3100 3250 3300

30 2750 3225 3500 3625 3750

40 2850 31oo 3275 3775 3950

50 - 3200 - 3475 3975
60 2700 - 3450 3500 3725

'giI;IPL. 70 - 305o - - "

i'_ ., 80 2650 - 3200 3575 3800
i_i .,'_ 90 - Z975 - - "

_' !oo - - 31oo 3350 3700
120 .... 3500

36
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Table Vl

Configuration 3 - Test Data

_j 8" x 2.8" pneumatic tire, smooth tread, #150 grit

_i aluminum oxide surface, 15 -_ 25 psi tire inflation pressure

Water Film Hydroplaning Speed Vcr.d (ft/min)
Thickness Load

h (in) W(lb) _ _

O.045 5 4150 43oo 4500
l 0 42O0 WOO 4450

15 415o 4300 4500
20 4050 4050 4250

"" ' 30 4200 4200 4350

40 4350 4550 4400

50 4600 4600 4500

60 4750 4700 4600

70 4800 4800 4750
80 - 4800 4800

90 - - 4900

0.075 5 3600 3700 4050

I0 3750 3900 4200 "

15 3700 3950 4250

20 3650 3850 4200

30 3550 3750 4000
40 3750 3800 4050

50 3900 39o0 410o
60 4100 4000 4200

70 4050 4125 4200
80 _350 4300 415o

90 4350 - 4200

)7

1974003931-TSC14



l

table Vl [Cont'd]

Water Film Hydroplaning Speed Vcr.d (ft/min)
Thickness Load

h (in) _ _ _ 2_ psi

0.]25 5 3300 3200 3350
lo 3450 3600 3550

15 3500 3800 3750

20 3400 3900 3900

30 3300 3600 3950

40 3400 3650 3800

50 3600 3700 3850

!_!_,/'_ _ 60 3650 3900 3900
;. , 70 3775 4200 4150
i_,_ • &O 4100 - "

M

; •
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Table Vl I

Configuration 4 - Test Data

8I_ x 2.8" pneumatic tire, 5 rib circumferential tread,

#!50 aluminum oxide surface

Water Film Hydroplaning Speed Vcr.d (ft/min)
Th ickness Load

,,h (i,n) _ 1_ psi 2o _si

0. 075 5 3750 - .m

I 0 4350 - -

15 4600 - -

20 4900 - -

:. 25 - ° =.. 3o 5350 - -

_! 35 5600 Note I: Any further
_ 40 - increase in load or
_" Inflation pressure,

50 - or decrease in film
thickness will cause60
road to exceed maxi-

mum safe speed.

0. 125 5 - - -

I0 3850 - -

15 4150 - -

20 4300 Note 2: 4300 ft/min
road speed requires25 a water flow rate

30 - of 327 GPHwhich is
maxImum equ Ipment: 35 -
capability. Any

40 - further increase in
W o,- P will cause

50 " road speed to
60 - Increase beyond water

flow capabi ! ity.

l I 39
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FIGURE 1. 8" DIA. x ._.25"WIDE POLYURETHANE TIRE (8 RIBS)
t

J
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FIGURE 2. 8" DIA. x 2.80" PNEUMATIC NYLON CORD
4-PLY TIRE (SMOOTH AND FULL TREAD
CONFI GURATION)
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LoadedTest Ti re

NozzI •

_._

_ Idler Drum Belt Po_._redDrum

,.."

;._

FIGURE 3. ROLLING ROAD
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FIGURE 4. WATERFILH NOZZLE
(Variable Film Thickness by
Changing Spacer Rods at: Dis-
Charge End)
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e_""

4000 --

3500!-
3000- h- .o12= ,021

2500 -- = .045
. = .075
' 2000 = ,125

_!___!_.._;,,

.
• '-" 1000 --

!

U
>

8" Dia, x 3.25" Wide Bald Polyurethane Tire

: 500 --

Load [lb]

,_. FIGURE 6, SPIN DOWNSPEED VS. LOAD (WATER FILM
THICKNESS AS A PARAMETER)
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• _' :3 0 l_._b._J_____/ 70I ! , J_____ lo_ _41_So5 I0 15 20
Load [Ib]

FIGURE 7, SPIN UP SPEED VS. LOAD ( WATER FILM
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